Broadcasting Cryptosystem in Computer Networks Using Geometric Properties of Lines*

Min-Shiang Hwang† Cheng-Chi Lee‡ Ting-Yi Chang§

Department of Information Management†
Chaoyang University of Technology
168 Gifeng E. Rd., Wufeng,
Taichung County, Taiwan 413, R.O.C.
Email: mshwang@cyut.edu.tw
Fax: 886-4-23742337

Department of Computer and Information Science‡
National Chiao-Tung University
1001 Ta Hsueh Road,
Hsinchu, Taiwan, R.O.C.

Department of Computer Science and Information Engineering§
Chaoyang University of Technology
168 Gifeng E. Rd., Wufeng,
Taichung County, Taiwan 413, R.O.C.

January 19, 2002

*This research was partially supported by the National Science Council, Taiwan, R.O.C., under contract no.: NSC90-2213-E-324-004.
Broadcasting Cryptosystem in Computer Networks Using Geometric Properties of Lines

Abstract

In 1997, Wu and Wu proposed an improvement of Chang-Wu broadcasting cryptosystem using geometric properties of lines. The Wu-Wu scheme gave a better performance and required fewer public parameters than the Chang-Wu scheme. In this paper, the authors shall propose an improvement of the Wu-Wu scheme using geometric properties of line. This improvement further reduces the amount of computing time and significantly decreases the parameters required as compared to the Wu-Wu scheme.

Keywords: Broadcasting, cryptosystem, security.

1 Introduction

In 1989, Laih et al. [4] proposed a new threshold scheme which is based on the definition of cross-product in an N-dimension vector space. Their scheme can be applied for designing conference key distribute systems. The conference key can be used to be an enciphering/deciphering key in the broadcasting cryptosystem.

In 1991, Chang and Wu proposed a broadcasting cryptosystem using interpolating polynomials and geometric properties of circles [1]. Later, in 1997, Wu and Wu proposed an improvement using geometric properties of line to give a better performance and requiring fewer public parameters than the Chang-Wu scheme [12].

In 1999, Liaw [5] proposed a new broadcasting cryptosystem based on the RSA public key scheme [2, 6] and a conventional cryptosystem such as DES
Liaw claimed that his scheme would require fewer broadcasting messages and it would be easier to insert new users into the system than all previous methods [1, 3, 11]. However, Sun pointed out [9] Liaw’s scheme required a very large amount of information for each broadcast and the information had to be kept by each user. Subsequently, Tseng and Jan proposed a conspiracy attack to Liaw’s scheme and proposed an improvement [10]. Nevertheless, the improvement had a weakness which Sun pointed out [9].

The Laih et al.’s scheme [4] is different from the Wu-Wu scheme [12]. In [4], there is no central authority server (CAS) which is used to distribute the individual secret key to each participant for constructing the conference key. Whoever wants to broadcast a secret message, the originator must have a responsibility to distribute the individual secret key over a secure channel in broadcasting stages. On the other hand, the CAS of the Wu-Wu scheme only need to distribute the secret key over a secure key to each participant one time. The originator only publishes a value to broadcast a secret message. The two schemes have different applications in the broadcasting cryptosystem.

In this article, we shall propose an improvement of the Wu-Wu scheme using geometric properties of line. Our improvement further reduces computing time and requires fewer parameters as compared to the Wu-Wu scheme. Furthermore, it still maintains the advantage of the Wu-Wu scheme.

The remainder of our paper is organized as follows. In Section 2, we briefly review the Wu-Wu broadcasting cryptosystem. In Section 3, we propose an improvement of the Wu-Wu scheme. In Section 4, we analyze the security of our improvement. In Section 5, we compare the performance of our improved scheme with the Wu-Wu scheme. Finally, we give a brief conclusion.
2 Review of the Wu-Wu Scheme

In this section, we briefly review the Wu-Wu scheme. The system parameters are defined as follows. CAS denotes the central authority server; \(U_i \) denotes a user in the system; \(S_i \) denotes the secret distinct point for \(U_i \); \(P_i \) denotes the distinct point; \(Q_i \) denotes the midpoint; \(f \) denotes a one-way function published by CAS; \(T \) denotes a time-variant parameter; \(E_k(\cdot) \) denotes the encryption and decryption functions of a symmetric cryptosystem using the session key \(k \). \(EP \) denotes the Euclidean plane. The scheme is divided into three stages as follows.

Initiative stage:
Assume that \((n+1)\) users are in the system. CAS randomly chooses \((n+1) \ S_i\) from \(EP \) and distributes \(S_i \) to \(U_i \) (for \(i = 0, 1, \cdots, n \)) via secure channels and then publishes a one-way function \(f \). For each secure broadcast, the broadcasting stage is performed by the originator and CAS, the recovery stage is performed by each legal receiver as described below.

Broadcasting stage:
Assume that \(U_0 \) is the originator who wants to broadcast a secret message \(M \) to \(U_1, U_2, \cdots, \) and \(U_m \) \((1 \leq m \leq n)\). After receiving \(U_0 \)'s request, CAS performs the following tasks:

1. Randomly select a line \(L(x) \) from \(EP \).

2. Randomly select \((m+1)\) distinct points \(Q_i \) from \(L(x) \), and computes \(P_i \) such that \(Q_i \) is the midpoint of \(P_i \) and \(f(T, S_i) \), for \(i = 0, 1, \cdots, m \), where \(T \) is a time-variant parameter.

3. Randomly select a point \(A \) from \(L(x) \), which is distinct from \(Q_0, Q_1, \cdots, Q_m \).

4. Publish \(T, A \) and \(P_i \) for \(i = 0, 1, \cdots, m \).
After that, U_0 can initiate a secure broadcasting transaction by performing the following tasks:

1. Calculate the midpoint of P_0 and $f(T, S_0)$, denoted as Q_0.

2. Reconstruct $L(x)$ with Q_0 and A.

3. Randomly select an integer r and compute $k = L(r)$.

4. Broadcast r and the ciphertext $C = E_k(M)$.

The graphical result of the above procedure is shown in Figure 1.

Recovery stage:

After receiving r and C, any legal receiver U_i has capability to recover M by performing the following steps:

1. Calculate the midpoint of P_i and $f(T, S_i)$, denoted as Q_i.

2. Reconstruct $L(x)$ with Q_i and A.

3. Compute $k = L(r)$ and decrypt the message M form $D_k(C)$.

Note that without the knowledge of S_i, no one can calculate $f(T, S_i)$. S_i is only known to legal users U_i and CAS.

3 Our Scheme

In this section, we propose an improvement of the Wu-Wu scheme. The improvement can decrease computing time and still maintain the advantage of the Wu-Wu scheme as described in later sections. The improvement consists of three stages: (1) **initiative stage**, (2) **broadcasting stage**, and (3) **recovery stage**. The system parameters $(CAS, U_i, S_i, f, T, E_k(\cdot), EP)$ and the initiative stage are the same as that of the Wu-Wu scheme. The details of our improvement are as follows:
Broadcasting stage:

Assume that U_0 is the originator who wants to broadcast a secret message M to U_1, U_2, \cdots, and U_m ($1 \leq m \leq n$). After receiving U_0’s request, CAS performs the following tasks:

1. Randomly chooses a line $L(x)$ from EP.

2. Compute $L(f(T, S_i))$ to derive y_i, and $(f(T, S_i), y_i)$ is a point on $L(x)$, for $i = 0, 1, \cdots, m$, where T is a time-variant parameter.

3. Randomly choose a point A from $L(x)$, which is distinct from $(f(T, S_i), y_i)$, for $i = 0, 1, \cdots, m$.

4. Publish T, A and y_0, y_1, \cdots, y_m.

After that, U_0 can initiate a secure broadcasting transaction by performing the following tasks:

1. Reconstruct $L(x)$ with A and $(f(T, S_0), y_0)$.

2. Randomly select an integer r and compute $k = L(r)$.

3. Broadcast r and the ciphertext $C = E_k(M)$.

Figure 1: Graphical result of broadcasting stage in the Wu-Wu scheme
The graphical result of the above procedure is shown in Figure 2.

Recovery stage:

After receiving \(r \) and \(C \), any legal receiver \(U_i \) will have the capability to recover \(M \) by performing the following steps:

1. Reconstruct \(L(x) \) with \(A \) and \((f(T, S_i), y_i) \).

2. Compute \(k = L(r) \) and decrypt the message \(M \) form \(D_k(C) \).

Note that without the knowledge of \(S_i \), no one can calculate \(f(T, S_i) \). \(S_i \) is only known to legal users \(U_i \) and \(CAS \).

![Graphical result of broadcasting stage in our scheme](image)

Figure 2: Graphical result of broadcasting stage in our scheme

4 Security Analysis

In order to obtain the broadcasting secret message, an adversary or illegal receiver must reconstruct \(L(x) \), generated by \(CAS \), then compute the session key \(k = L(r) \) to decrypt the message \(M \). If an adversary or illegal receiver wants to reconstruct \(L(x) \), he/she must find two points on \(L(x) \). The adversary
would then only know of one public point A, to find another point on $L(x)$
would be extremely difficult.

An illegal receiver U_j might act as a legal one and compute the point
$(f(T, S_j), y_i)$ for reconstructing $L(x)$, we see that the probability of finding the
point located on $L(x)$ is equivalent to that of performing an exhaustive search
on k [12]. Furthermore, y_i is computed by $L(f(T, S_i))$ and lines $L(x)$ that are
time-variant, the adversary or illegal receiver would not be able to accurately
determine the extra point that is on current $L(x)$.

5 Performance and Storage Analysis

The Wu-Wu scheme used geometric properties of line to give a better per-
formance and required fewer public parameters than the Chang-Wu scheme.
In this section, we analyze the performance and storage complexities of our
scheme, and compare it with the Wu-Wu scheme.

To analyze the computational complexity of the Wu-Wu scheme and our
scheme, we first define related notations as follows. T_f: the time for executing
the adopted one-way function f; T_L: the time for constructing a line $L(x)$
giving two distinct points in EP; T_Q: the time for obtaining the midpoint of
two points; $T_{L[r]}$: the time for calculating $L(r)$, where $L(x)$ is a line.

<table>
<thead>
<tr>
<th></th>
<th>Broadcasting stage</th>
<th>Recovery stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu-Wu scheme</td>
<td>$T_L + (m + 2)(T_Q + T_f) + (m + 3)T_{L[r]}$</td>
<td>$T_f + T_Q + T_L + T_{L[r]}$</td>
</tr>
<tr>
<td>Our improvement</td>
<td>$T_L + (m + 2)T_f + (m + 3)T_{L[r]}$</td>
<td>$T_f + T_L + T_{L[r]}$</td>
</tr>
</tbody>
</table>

Table 1: Performance of the Wu-Wu scheme and our scheme

From Table 1, it is obvious that our scheme is more efficient than the Wu-
Wu scheme. Our scheme is less $(m + 2)T_Q$ and T_Q than the Wu-Wu scheme
in the broadcasting stage and recovery stage, respectively. Furthermore, our
scheme doesn’t need the Q_i points which increases by the number of the partic-
ipants in the system. Thus, our scheme requires fewer parameters and reduces
6 Discussions and Conclusions

In order to avoid an adversary pretends to be U_0, a legal originator, to host a broadcasting system, both Wu-Wu and our schemes need a secure channel between U_0 and CAS to authenticate each other.

Our scheme is a special case of Shamir’s secret sharing scheme [8]. Our scheme can be constructed by applying Shamir’s $(2, n)$ secret sharing scheme. In our scheme, CAS publishes a point A from $L(x)$. Each participant can use A and $(f(r, S_i), y_i)$ to reconstruct $L(x)$ and obtain the session key k.

In this article, we have proposed an improved scheme which modifies some aspects of the Wu-Wu scheme. Our scheme has successfully reduced the computing time and significantly lessened the parameters required. Though modifications were made the original advantages are maintained and un-compromised. In addition, the overall performance and requirements of fewer parameters make our proposed scheme an improvement on the Wu-Wu scheme.

References

