Password Authenticated Key Exchange and Protected Password Change Protocols

Ting-Yi Chang, Min-Shiang Hwang and Chou-Chen Yang

1. Introduction

The rapid progress of networks facilitates more and more computers being connected together to exchange large amounts of information and share system resources. Various resources distributed among hosts are shared across the networks in the form of network services provided by servers. Before providing the services, the servers should have the ability to authenticate users’ identities. A simple method uses a large, random secret (128-bit or 256-bit) that is secretly shared between the user and the server. Using the common secret, the server can easily authenticate the user. However, because the user may not remember it, she/he may need a device such as a smart card to store it [2,7,9,26,27]. Another method is to employ an easy-to-remember password instead of the large, random secret. The password approach offers a simple and practical solution for user identification to allow people to remember their passwords without any devices [21]. However, passwords narrow down the possibilities and make it easier for attackers to mount guessing attacks [9]. Most of these types of schemes [10,11,16] require symmetric cryptosystems, and others [8] or public-key cryptosystems to protect passwords which are transferred over an unsecured network.

To repair these security flaws, Tseng et al. employed the Diffie-Hellman key exchange scheme [19] and the one-way hash function [6]. Lee et al. employed the one-way hash function, and Hwang et al. employed a server’s public cryptosystem to solve the security flaws present in the Peyravian-Zunic scheme. Unfortunately, in 2003, Lin and Hwang [12] and Yang et al. [23] simultaneously pointed out that the Hwang-Yeh improved password change schemes suffered from the Denial Of Service attack (DOS attack) and repair the security flaws. On the other hand, Yang et al. [22] pointed out Tseng et al.’s improved password change scheme also suffered from the DOS attack. The DOS attack...

Abstract: In this paper, we propose new Password Authenticated Key Exchange (PAKE) and Protected Password Change (PPC) protocols without any symmetric or public-key cryptosystems. The security of proposed protocols is based on the computational Diffie-Hellman assumption in the random oracle model. The proposed scheme can resist both forgery server and denial of service attacks.

Keywords: authenticated key exchange; Diffie-Hellman problem; password authentication; provable security.
leads to an adversary who can intercept the request for a password change sent by a legal user and modify it with a wrong password. The user is under the impression that she/he has changed her/his password successfully. But she/he cannot log in to the server the next time. Compare with Yang et al.’s scheme [23], the Lin-Hwang scheme [12] additionally allow the client and the server in the password-authenticated protocol to establish a session key. In this respect, it is similar to the Password Authenticated Key Exchange (PAKE) schemes [5,22]. In the PAKE schemes, two parties via pre-shared password technology agree to a common session key. To protect sensitive data from eavesdropping and modification between two parties, the authenticated key can be used for protecting sensitive data and ensuring data integrity. Because of different motive, the related-PAKE schemes [24] do not provide two parties to change their shared password.

On the other hand, the public-key cryptosystem exists in the Lin-Hwang scheme and Yang et al.’s scheme. In particular, to avoid an adversary from replacing the original public keys of the server with her/his own, certificates (e.g. digital signatures) should be introduced into their scheme. A certificate from a trusted authority is what servers with public keys will ask for before providing service. This means that users need a large storage space for storing certificates. More bandwidth is also needed to verify the signatures.

In this paper, we propose new PAKE and Protected Password Change (PPC) protocols which are based on the computational Diffie-Hellman assumption and the one-way hash function. The proposed PAKE scheme has the following four basic security requirements:

- Mutual authentication: the user and the server can authenticate each other.
- Session key security: no one except the user and the server can agree to the common session key with a non-negligible probability.
- Forward secrecy: when the password is compromised, it does not reveal the earlier session keys.
- Know-key security: when the session key is lost, it does not reveal other session keys. This limits the damage caused by a compromised session key to that compromised session only.
- Withstanding an off-line password guessing attack: an adversary cannot find an equation to verify whether his/her guess password is correct.

The proposed PPC scheme not only satisfies the above requirements but also allows clients to arbitrarily change their own passwords.

The security of the schemes in [19,23] is evaluated by heuristic security analysis. In heuristic security analysis, any successful attack requires a resource level (e.g., time and space) greater than the fixed resources of a perceived adversary. If the protocol survives the analysis, such an analysis is said to have heuristic security (ad hoc security). Obviously, many schemes were often shown to be insecure (unforeseen attacks may occur) after they were first put forward. In view of this defect, we employ Bellare, Poincheval and Rogaway’s model (called the BPR model) [4], which provides the formal model for provable security in the complex-theoretic framework of modern cryptography, to prove the security of our PAKE and PPC protocols.

The organization of the article is as follows. In Section 2, we will propose new PAKE and PPC protocols. In Section 3, the formal validation of the security of our schemes using the BPR model is shown. Finally, we shall conclude this article in Section 4.

2. The Proposed Scheme

To get rid of the security flaws, we shall propose the PAKE and PPC protocols. In the system, two large prime numbers p and q are published such that $q|p − 1$. Let g be a generator with order q in the Galois field $\mathbb{GF}(p)$, which is based on the Diffie-Hellman scheme. In this system, a user has the identity id and the corresponding password pw. The password pw is secretly shared only by the user and the server. The server employs a one-way hash function $H(\cdot)$ to store $Hpw = H(id, pw)$ in a verification table. Here, we give the identity of the server as S because the client may be involved in distinct, concurrent executions of the PAKE and PPC protocols with other servers. The two protocols are described as follows.
Password Authenticated Key Exchange Protocol:

Step 1. Client \implies Server: $\langle id, R_c \oplus H(id, pw) \rangle$

The user gives his/her id and pw to the client. The client computes the hash value $H(id, pw)$. Then the client chooses a random number $c \in [1, q - 1]$ and computes $R_c = g^c \mod p$. Then the client sends id and $R_c \oplus H(id, pw)$ to the server.

Step 2. Server \implies Client: $\langle S, H(K, R_c) \rangle$

After receiving id and $R_c \oplus H(id, pw)$, the server retrieves Hpw from the verification table and recovers R_c by computing $(R_c \oplus H(id, pw)) \oplus Hpw$. Then the server computes $K = (R_c)^s = g^{cs} \mod p$, where $s \in [1, q - 1]$ is the server privacy key and $R_s = g^s \mod p$ is the server public key. Then the server sends $H(K, R_c)$ to the client.

Step 3. Client \implies Server: $\langle id, H(K, R_c) \rangle$

After receiving id and $H(K, R_s)$, the client computes $K = (R_s)^c = g^{cs} \mod p$. Then the client computes $H(K, R_c)$ and compares it with the received $H(K, R_c)$. If these two values are equivalent, the client computes $H(K, R_s)$ and sends it together with id to the server. This check is used for authenticating the server.

Step 4. Server: Access granted or Access denied

After receiving id and $H(K, R_s)$, the server uses its own copies K and his public key R_s to compute $H(K, R_s)$ and compares it with the received $H(K, R_s)$. If these two values are equivalent, the server grants the client’s login request. Otherwise, the server denies the client’s login request.

The performance of the proposed protocol is analyzed as follows. The client needs 3 hashing operation2, 1 exclusion operation, and 2 exponentiation operations in Steps 1 and 3. The server needs 2 hashing operation2, 1 exclusion operation, and 1 exponentiation operation in Steps 2 and 4.

Protected Password Change Protocol:

Assume that the client wants to change his password from an old password pw to a new password newpw. The steps are as follows.

Step 1*. Client \implies Server: $\langle id, R_c \oplus H(id, pw), R_c \oplus Hnewpw \rangle$

The messages id and $R_c \oplus H(id, pw)$ are the same as those in Step 1 in the PAKE protocol. The client additionally sends $R_c \oplus Hnewpw$ to the server.

Step 2*. Server \implies Client: $\langle S, H(Hnewpw, K, R_c) \rangle$

After receiving id, $R_c \oplus H(id, pw)$, and $R_c \oplus H(id, newpw)$, the server retrieves Hpw from the verification table to recover R_c by computing $(R_c \oplus H(id, pw)) \oplus Hpw$. Then the server uses the recovered R_c to further obtain $Hnewpw$ by computing $(R_c \oplus Hnewpw) \oplus R_c$. Then the server computes $K = (R_c)^c = g^{cs} \mod p$, and $H(Hnewpw, K, R_c)$. Then the server sends $H(Hnewpw, K, R_c)$ to the client.

Step 3*. Client \implies Server: $\langle id, H(K, R_s) \rangle$

After receiving S and $H(Hnewpw, K, R_c)$, the client computes $K = (R_s)^c \mod p$ and $H(H(id, newpw), K, R_c)$. Then the client checks whether the received $H(Hnewpw, K, R_c)$ is equal to $H(H(id, newpw), K, R_c)$. If the two values are equivalent, the client sends id and $H(K, R_s)$ to the server.

Step 4*. Server: Access granted or Access denied

After receiving id and $H(K, R_s)$, the server uses its own copies K and public key R_s to compute $H(K, R_s)$ and compares it with the received $H(K, R_s)$ in Step 3*. If these two values are equivalent, the server stores the recovered $Hnewpw$ in Step 1* into a verification table. Otherwise, the server denies the client’s password change request.

From the above descriptions of the two protocols, the client and the server can agree to a common session key $SK = H(K) = H(g^{cs} \mod p)$ after mutual authentication. On the other hand, the proposed PAKE protocol is similar to the Yeh-Sun scheme [24]. The difference is in the messages $\langle S, R_c \oplus$
We fix a nonempty set of CLIENT and a specific SERVER in the PAKE protocol. Either a client or a server may have many instances, called oracles, involved in distinct, concurrent executions of the PAKE protocol. In the following, we will treat users (holding passwords) as clients to simplify the protocol.

3. Formal Security Proof

In this section, we use the BPR model [4] to formally prove the PAKE protocol in the random oracle model (ideal hash model). The model can be reduced to breaking the security of the protocol and treated as difficult as solving the underlying primitives. After analyzing the security of the PAKE protocol, we can easily extend its result to the PPC protocol. Hence, we only give a complete analysis of the PAKE protocol. In the following, we will treat users (holding passwords) as clients to simplify the protocol.

3.1. The Model

The model is principally used to formally: (1) define the characteristics of participating entities, (2) define an adversary’s capabilities, and (3) describe the protocol. The details are described as follows.

Protocol Participants:

We fix a nonempty set of CLIENT and a specific SERVER in the PAKE protocol. Either a client or a server may have many instances, called oracles, involved in distinct, concurrent executions of the PAKE protocol. We denote an instance i of a client as \prod^i_C and an instance j of a server as \prod^j_S.

Session Identity (SID) and Partner Identity (PID):

The session identity is used to uniquely name the ensuing session. $\text{SID}(\prod^i_U) = S$, the concatenation of all flows with the oracle \prod^i_U. $\text{PID}(\prod^i_U) = U'$, denoted as \prod^i_U, is communication with an instance of a server U'. For example, for the oracles \prod^i_C and \prod^j_S, their own $\text{SID}(\prod^i_C)$ and $\text{SID}(\prod^j_S)$ equal $\langle id, R_c \oplus H(id, pw) \rangle | S, R_c, H(K, R_c) | id, H(K, R_c) |$, $\text{PID}(\prod^i_C)$ equals S, and $\text{PID}(\prod^j_S)$ equals id in the PAKE protocol. The SID and PID are public, and an adversary can just listen in on the wire and construct it.

Accepting and Terminating:

There are two states, accept $\text{ACC}(\prod^i_U)$ and terminate $\text{TERM}(\prod^i_U)$, for an oracle \prod^i_U. When an oracle has enough information to compute the session key SK, the state of $\text{ACC}(\prod^i_U)$ is set to true. An oracle can accept at any time and it accepts at most once. When an oracle sends or receives the last message of the protocol, receives an invalid message, or misses an expected message, the state of $\text{TERM}(\prod^i_U)$ is set to true. As soon as an oracle terminates, it will not send out any message.

Oracle Queries (Adversary’s Capabilities):

An adversary has an endless supply of oracles and makes various queries to them. Each query models
a capability of the adversary. The more types of query, the more security requirements, such as forward secrecy, known-key security, etc., that the protocol can satisfy. In the following, there are six types of queries that adversary can make.

- **Send**(Π_{U}, m): This query models an adversary sending a message m to the oracle Π_{U}, and the oracle responds to what the protocol say to and updates SID, PID, and its states. The adversary query of the form **Send**(Π_{U}, “start”) initiates an execution of the protocol.

- **Execute**(Π_{C}, Π_{S}): This query models an adversary obtaining an honest execution of the protocol between two oracles Π_{C} and Π_{S}, and outputs a completed transcript corresponding to them.

- **Reveal**(Π_{U}): This query models an adversary obtaining session key SK with an unconditional return by Π_{U}. The **Reveal** query will let us deal with known-key security. The **Reveal** query is only available to an adversary if the state $ACC(\Pi_{U})$ of Π_{U} is true.

- **Corrupt**(Π_{U}): This query models an adversary obtaining a password pw with unconditional return by Π_{U}. The **Corrupt** query will let us deal with forward secrecy.

- **Hash**(m): In the ideal hash model, an adversary gets hash results by making queries to a random oracle. After receiving this query, the random oracle will check whether m has been queried. If so, it returns the result previously generated by the adversary. Otherwise, it generates a random number r, returns r to the adversary, and stores (m, r) in the **Hash** table, which is a record set used to record all previous **Hash** queries.

- **Test**(Π_{U}): This query models the semantic security of the session key SK. During an execution of the protocol, the adversary can ask any of the above queries and ask a **Test** query once. Then Π_{U} flips a coin b and returns SK if $b = 1$, or a random string if $b = 0$. The **Test** query is asked only once and is only available if is fresh (see Section 4.2). This query is only measure adversarial success. It does not correspond to any actual adversarial ability.

Description of the PAKE Protocol:

In the following, we describe how to initialize the PAKE protocol and how instances behave when an adversary makes queries.

Initialize(l, k), where l and k are security parameters (l/k).

1. Select two prime numbers p with length $|p| = k$ and q with length $|q| = l$. Let g be a generator with order q in the Galois Field $\mathbb{GF}(p)$, which is based on the Diffie-Hellman scheme.

2. Select a hash function $H(\cdot)$: $\{0, 1\}^{*} \rightarrow \{0, 1\}^{k}$.

3. Each client sets up an identity id and a password pw from a set D of the dictionary. Let n be the number of passwords in D. The server stores $HPW = H(id, pw)$ in a verification table.

4. Each oracle Π_{i} is set to:
 - $ACC(\Pi_{i}) \leftarrow TERM(\Pi_{i}) \leftarrow false$
 - $SK(\Pi_{i}) \leftarrow SID(\Pi_{i}) \leftarrow PID(\Pi_{i}) \leftarrow null$.

In the following, assume that a client Π_{C} and a server Π_{S} execute the protocol. The processes of the oracles are described as follows:

Execute(Π_{C}, Π_{S})

1. **Send**$_{1}$(Π_{C}, “start”);
 - $c \leftarrow [1, q - 1]$;
 - $R_{c} \leftarrow g^{c} \mod p$;
 - $msg \leftarrow out_{1} \leftarrow \langle id | R_{c} \oplus H(id, pw) \rangle$;
 - return($msg - out_{1}$).

2. **Send**$_{2}$(Π_{S}, m), where $m \neq "start"$;
 - $(m_{1}^{S}, m_{2}^{S}) \leftarrow m$;
 - $R_{c} \leftarrow m_{2}^{S} \oplus HPW$;
These definitions are to ensure that two oracles have directly exchanged messages (\(\text{SID}(\Pi^c)_i = \text{SID}(\Pi^s)_j\)), established the common session key (\(\text{SK}(\Pi^c)_i = \text{SK}(\Pi^s)_j\)), and have no other partners besides each other (\(\text{PID}(\Pi^c)_i = \text{id}\) and \(\text{PID}(\Pi^s)_j = \text{id}\)).
FRESHNESS:
An oracle \(\prod_I \) is identified as fresh if the following conditions hold.

- \(\prod_I \) has accepted \(\text{ACC}(\prod_I) = \text{true} \).
- No oracle has been asked for a Corrupt query before \(\prod_I \) accepts.
- Neither \(\prod_I \) nor its partner has been asked for a Reveal query.

Assume that two oracles \(\prod_I \) and \(\prod_J \) are partnered and establish a session key. The session key is fresh if and only if both oracles are fresh.

Authenticated Key Exchange Security (AKE Security):
In an execution of the PAKE protocol, we say an adversary \(A \) wins (a game of breaking the AKE security) if \(A \) asks a single Test query to a fresh oracle \(\prod_I \) and correctly guesses the bit \(b \), which is selected by \(\prod_I \) in the Test query. We denote the AKE advantage \(A \) has in attacking the PAKE protocol as \(\text{Adv}_{\text{PAKE}}(A) \); the advantage is taken over all bit tosses. The PAKE protocol is AKE-secure if \(\text{Adv}_{\text{PAKE}}(A) \) is negligible.

Mutual Authentication (MA):
In an execution of the PAKE protocol, we say an adversary \(A \) violates the mutual authentication between the client and the server if some server or client accepts but has no partner oracle. We denote \(A \)‘s AKE advantage in attacking the PAKE protocol as \(\text{Adv}_{\text{PAKE}}(A) \). The PAKE protocol is MA-secure if \(\text{Adv}_{\text{PAKE}}(A) \) is negligible.

Computational Diffie-Hellman (CDH) Assumption:
Let \(p \) and \(q \) be large prime numbers such that \(q \parallel p - 1 \). Let \(g \) be a generator with order \(q \) in the \(\text{GF}(p) \). And let \(\bar{c} \in [1, q - 1] \) and \(\bar{s} \in [1, q - 1] \) be two random numbers. Assume that \(B \) is a CDH attacker whose probability of giving a challenge \(\psi = (g^2 \mod p, g^s \mod p) \) to output \(z = g^{\bar{c} \cdot \bar{s}} \mod p \) is \(\epsilon \). We denote this success probability as \(\text{Succ}_{\psi \rightarrow z}(B) \). The CDH problem is intractable if \(\text{Succ}_{\psi \rightarrow z}(B) \) is negligible.

Adversary’s Resources:
The security is formulated as a function of the amount of resources an adversary \(A \) expends. The resources are:

- \(t \): the adversary \(A \) running time. By convention, this includes the amount of space it takes to describe the adversary.
- \(q_{\text{se}}, q_{\text{exe}}, q_{\text{rec}}, q_{\text{cor}}, q_h \): these count the number of Send, Execute, Reveal, Corrupt, and Hash queries separately asked by the adversary \(A \), i.e., the number of \(q_{\text{se}} \) in the PAKE protocol is \(q_{\text{se}} = q_{\text{se}1} + q_{\text{se}2} + q_{\text{se}3} + q_{\text{se}4} \). \(q_{\text{exe}1}, q_{\text{exe}2}, q_{\text{exe}3}, \) and \(q_{\text{exe}4} \) are, respectively, the number of Send1, Send2, Send3, and Send4 queries asked by \(A \).

3.3. Security Proofs of the PAKE and PPC Protocols

Theorem 1. Let \(A_1 \) be an adversary attacking the AKE-security of the PAKE protocol within a time period \(t \) after the number of Send queries \(q_{\text{se}} \) and the number of Hash queries \(q_h \). Then we have:

\[
\text{Adv}_{\text{PAKE}}(t, q_{\text{se}}, q_h) \leq \frac{q_{\text{se}}}{N} + q_h \times \text{Succ}_{\psi \rightarrow z}(t') + \frac{q_h}{2\pi t'},
\]

where \(t' \) is the running time of a CDH attacker \(B \).

Proof. We divide the process of proof in Theorem 1 into two parts as follows. (1) Password guessing attack: show that the transcripts that the adversary gets are independent of the password in the
theoretical information sense. (2) Session key security: Let B play two roles with adversary A_1 and the CDH problem. With adversary A_1, B plays the role of a simulator, who provides indistinguishability to adversary A_1 (A_1 has no ability to distinguish the real protocol and B’s simulated protocol). With the CDH problem, B plays the role of an attacker to solve the challenge of the CDH problem. When A_1 distinguishes the real protocol and B’s simulated protocol that B is face on the CDH problem.

(1) Password Guessing Attack:

Based on the random oracle model, for any query from Hash$(m = (id, pw'))$ for guessing the password pw', there exists a record $\{(id, pw'), r\}$ in the Hash table. Because $c \in [1, q - 1]$ is chosen at random (implying that R_c is a random number), the adversary A_1 observes that the message $\langle id, R_c \oplus H(id, pw) \rangle$ is returned from the Send$_1$ query, which is independent of r. On the other hand, A_1 can get all the transcripts by asking an Execute query. However, the transcripts that the adversary gets are independent of the passwords. Therefore, the adversary gets no advantage for the off-line guessing attack. The probability λ of the on-line password guessing attack is bounded by q_{se} and n as follows:

$$\lambda \leq \frac{q_{se}}{n}. \quad (2)$$

The on-line guessing attack can be prevented by letting the server take the appropriate intervals between trials.

(2) Simulator/CDH Attacker: B

To analyze the session key security, we assume that B has knowledge of the content of the verification table. Assume that A_1 can get an advantage ϵ in breaking the AKE security of the PAKE protocol within time t, and B is given a challenge $\psi = (g^c \mod p, g^{c^2} \mod p)$ to output $z = g^{c^2} \mod p$ with probability within time t'. Initializing the PAKE protocol, B chooses a random number i from $[1, q_{se1}]$ and sets a counter cnt to zero. After that, B starts running A_1 and answers the queries made by A_1 as explained below.

1. When A_1 makes a Send$_1$ query, B increases the counter cnt by 1. If $cnt \neq i$, B answers according to the PAKE protocol (return $\langle id, R_c \oplus H(id, pw) \rangle$). If $cnt = i$, B answers by using the element $g^c \mod p$ from the challenge ψ (return $\langle id, (g^c \mod p) \oplus H(id, pw) \rangle$). When A_1 makes a Send$_2$ query, if the input is not equal to the message $\langle id, (g^c \mod p) \oplus H(id, pw) \rangle$, B answers according to the PAKE protocol (return $\langle S, R_s, H(K, R_c) \rangle$). If the input is the flow corresponding to the challenge ψ, B answers by using the element $g^c \mod p$ from the challenge ψ (return $\langle S, g^c \mod p, random \rangle$, where random is a random element with length k). Here, it is difficult for B to simulate an indistinguishable answer without the ability to solve the challenge ψ.

2. When A_1 makes a Reveal query, B checks whether the oracle has accepted and is fresh. If so, B answers by using the session key SK. However, if the session key has to be constructed from the challenge ψ, B halts and output fail.

3. When A_1 makes a Corrupt or Execute query, B answers in a straightforward way.

4. When A_1 makes a Hash(m) query, B checks whether m is in the Hash table. If so, B returns the previous result. Otherwise, B returns a random number r from $\{0, 1\}^k$ and appends (m, r) to the Hash table.

5. When A_1 makes a single Test query, B answers in a straightforward way. If the session key has to be constructed from the challenge ψ, B answers with a random string for the Test query on an oracle.

Obviously, A_1 cannot distinguish the real protocol and B’s simulated protocol unless the challenge ψ is involved. The probability of B correctly guessing which session key A_1 will use for the Test query
is the probability of \(cnt \) being equal to \(i \) (the probability that \(B \) has to output \(z \)). We denote it by \(A_1 \).

Then we have:

\[
\alpha = \frac{1}{q_{se}} \geq \frac{1}{q_{se}}.
\]

(3)

If it is assumed that \(A_1 \) has broken the AKE security of the PAKE protocol (\(A_1 \) outputs a bit \(b' \) after the Test query and wins), then at least one of the Hash queries must equal \(SK \) stored in the Hash table. We denote \(\beta \) as the probability that \(B \) correctly chooses among the possible Hash queries. Then we have:

\[
\beta \geq \frac{1}{q_h}.
\]

(4)

From the above, the probability of \(B \) outputting \(z \) from the challenge \(\psi \) is the probability \(\epsilon \) that \(A_1 \) breaking the AKE security of the PAKE protocol multiplied by the probability \(\alpha \) that \(B \) outputting \(z \) multiplied by the probability \(\beta \) that \(B \) correctly choosing among the possible Hash queries.

\[
\text{Succ}_{\psi \rightarrow z}^{CDH}(B) = \epsilon \times \alpha \times \beta \geq \frac{\epsilon}{q_{se}} \times \frac{1}{q_h}.
\]

(5)

We can rewrite the above equation as:

\[
\epsilon \leq \text{Succ}_{\psi \rightarrow z}^{CDH}(B) \times q_{se} \times q_h.
\]

(6)

From the above analysis, the advantage of \(A_1 \) in attacking the PAKE protocol is the probability \(\lambda \) the on-line password guessing attack added to the probability \(\epsilon \) of breaking the AKE security of the PAKE protocol added to \(A_1 \) making Hash queries with just the right session key by pure chance. The concrete security of the PAKE protocol is as follows:

\[
\text{Adv}_{\text{PAKE}}^{\text{AKE}}(A_1) = \lambda + \epsilon + \text{pure chance} \leq \frac{q_{se}}{n} + q_h \times q_{se} \times \text{Succ}_{\psi \rightarrow z}^{CDH}(B) + \frac{q_h}{2^k}.
\]

(7)

\textbf{Theorem 2.} Let \(A_2 \) be an adversary attacking the MA-security of the PAKE protocol within a time period \(t \) after the number of Send queries \(q_{se} \) and the number of Hash queries \(q_h \). Then we have:

\[
\text{Adv}_{\text{PAKE}}^{\text{MA}}(t, q_{se}, q_h) \leq \text{Adv}_{\text{PAKE}}^{\text{AKE}}(t', q_{se}, q_h) + \frac{q_h}{2^k}.
\]

(8)

where \(t' \) is the running time of the adversary \(A_1 \) attacking the AKE security of the PAKE protocol.

\textbf{Proof.} The probability is \(A_1 \) breaking the AKE-security added to \(A_2 \) making Hash queries with just the right, mutually authenticated messages (\(H(K, R_c) \) or \(H(K, R_s) \)) by pure chance. Because we have given Hash queries with just the right session key by pure chance in Theorem 1, it may just be one of the right authenticated messages. The advantage of \(A_2 \) attacking MA-secure is \(A_1 \) attacking AKE-secure added to \(A_2 \) making Hash queries with just the right authenticated messages by pure chance (one includes \(A_1 \) making Hash queries with just the right session key).

\[
\text{Adv}_{\text{PAKE}}^{\text{MA}}(A_2) \leq \text{Adv}_{\text{PAKE}}^{\text{AKE}}(A_1) + \frac{q_h}{2^k} = \frac{q_{se}}{n} + q_h \times q_{se} \times \text{Succ}_{\psi \rightarrow z}^{CDH}(B) + \frac{q_h}{2^k-1}.
\]

(9)

From Theorems 1 and 2, we can easily extend its result to the PPC protocol. The AKE-security and MA-security are shown in Theorems 3 and 4, respectively.
Theorem 3. Let A_1 be an adversary attacking the AKE-security of the PPC protocol within a time period t after q_{se} interactions with the parties and q_h^* Hash queries. Then we have:

$$\text{Adv}_{\text{AKE}}^{\text{PPC}}(t, q_{se}^*, q_h^*) \leq \frac{q_{se}^*}{n} + q_h^* \times q_{se}^* \times \text{Succ}_{\text{CDH}}^{\text{RA}}(t') + \frac{q_h^*}{2^k},$$ \hspace{1cm} (10)$$

where t' is the running time of a CDH attacker B.

Theorem 4. Let A_2 be an adversary attacking the AKE-security of the PPC protocol within a time period t after q_{se}^* interactions with the parties and q_h^* Hash queries. Then we have:

$$\text{Adv}_{\text{MA}}^{\text{PAKE}}(t, q_{se}^*, q_h^*) \leq \text{Adv}_{\text{AKE}}^{\text{PAKE}}(t', q_{se}^*, q_h^*) + \frac{q_h^*}{2^k},$$ \hspace{1cm} (11)$$

where t' is the running time of the adversary A_1 attacking the AKE security of the PPC protocol.

q_{se}^* and q_h^* are separately the number of Send query and Hash query made by the adversary in the PPC protocol.

4. Comparisons

In this section, we compare our scheme with Zhang et al.’s scheme [25], Ahmed et al.’s scheme [1], Liu et al.’s scheme [14], Lee et al.’s scheme [10], Wei et al.’s scheme [20], and Yang et al.’s scheme [23], which provide a password authentication protocol and a protected password change protocol.

| Table 1. Comparisons among related schemes and our proposed scheme |
|-----------------|---|---|---|---|---|---|
| | [25] | [1] | [14] | [10] | [20] | [23] |
| Off-line guessing attack | No | Yes | No | No | Yes | No |
| Stolen-verifier attack | No | Yes | No | No | No | No |
| Replay attack | No | No | Yes | Yes | No | No |
| DOS attack | No | No | Yes | No | Yes | No |
| Key Compromise Impersonation Attack | No | No | No | No | No | No |
| Mutual Authentication | Yes | Yes | No | Yes | Yes | Yes |
| Session key establishment | Yes | Yes | Yes | No | Yes | Yes |
| Forward Secrecy | No | No | Yes | - | Yes | - |
| Provable security | Yes | No | No | No | No | Yes |
| Known-password by Server | Yes | No | No | No | No | No |

In the Key Compromise Impersonation attack [3], an attacker who is in possession of a client’s password installed at a victim, can impersonate any server. In the proposed scheme, even the attacker known the client’s password, he/she is unable to compute the $H(K, R_c)$ in Step 2 of the proposed Password Authenticated Key Exchange Protocol because the attacker does not know the server’s privacy key. In 2016, Ahmed et al. proposed a dynamic ID-based user authentication scheme for multi-server environment [1]. Their scheme is vulnerable to off-line identity guessing and off-line password guessing with smart card stolen attacks [15]. In 2016, Wei et al. proposed a smart card-based user authentication scheme [20]. Their scheme is vulnerable to password guessing attack and denial of service attack [18]. In 2017, Liu et al. proposed a user password authentication scheme with a smart card [14]. Their scheme is simple and efficient. However, their scheme is vulnerable to the replaying attack [13].

From Table 1, it is obvious that only the security of our scheme is proven in the standard model.
5. Conclusions

In this paper, we have proposed a new scheme to resist the security flaws of the forgery server attack and denial of service attack. The proposed scheme can successfully solve these security flaws with a less computation and, in addition, establish the session key. The provable security is given a thorough analysis in our scheme. In terms of security analysis, it is more convincing than heuristic security. Although the proposed scheme used less calculation, but still need the exponential operation, the future should be developed a secure scheme without the use of exponential operation, so that applied to the Internet of thing devices.

References

© 2017 by the authors. Submitted to Entropy for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).