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A New Anonymous Conference Key Distribution System
based on the Elliptic Curve Discrete Logarithm Problem

Abstract

In 1999, Tseng and Jan [11] proposed two conference key distri-
bution systems (CKDS) with user anonymity based on the discrete log-
arithm problem and the interpolating properties of polynomials. Their
first CKDS scheme uses a one-way hash function to hide the identities
of the participants and to protect each participant’s common key that
is shared with the chairperson. In this article, we will propose a more
efficient CKDS scheme with user anonymity which is based on the el-
liptic curve discrete logarithm problem and the properties of the line.
Our scheme has the advantage of requiring less computing time than
the Tseng-Jan CKDS with a one-way hash function.

Keywords: Cryptography, Conference key distribution system, User
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1 Introduction

Diffie and Hellman [1] proposed a key distribution system (KDS) based on
discrete logarithm problem for distributing the common session key between
two users. It allows two users to establish a secret communication over an
insecure channel. However, the Diffie-Hellman KDS is only suitable for the
point-to-point situation. In order to make it suitable for more users when
communicating with each other in a conference, Ingemarsson et al. [5] pro-
posed a conference key distribution system (CKDS). In the CKDS, only legal
participants attending the conference can recover the common conference key.

Most of the existing CKDS schemes [2, 3, 4, 5, 7] today do not have the pri-

vacy for the attending participants in the conference. To protect a participant



from the influence of other participants, the identity of the participant should
be kept secret. Lin et al. [8] used sealed locks to achieve the CKDS with user
anonymity. However, the computational complexity of their scheme makes it
impractical. Later, Wu [13] proposed a CKDS with user anonymity based on
the Diffie-Hellman KDS and the algebraic approach. In his scheme, a one-way
function is used to hide the identities of the participants and to protect each
participant’s common key shared with the chairperson. On the other hand, the
algebraic approach is used for the chairperson and legal attending participants
to distribute and recover the common conference key, respectively.

In 1999, Tseng and Jan proposed two CKDS schemes with user anonymity.
One (Tseng-Jan CKDS-1) is a modified version of Wu’s scheme by using the
interpolating properties of polynomials in place of the algebraic approach to
reduce the computational complexity. The other (Tseng-Jan CKDS-2) does
not use a one-way function to achieve the same purposes. However, Yang et al.
[14] pointed out that the conspiracy attack could break the Tseng-Jan CKDS-
2. If there are n participants attending the conference, n — 1 participants can
conspire to reveal the only other participant’s common session key shared with
the chairperson.

In this article, we will substitute some simple properties of the line for the
interpolating properties of polynomials. Our scheme has a lower computational
complexity than that of the Tseng-Jan CKDS-1. Moreover, we use the less
time-consuming elliptic curve discrete logarithm problem to achieve the same
purposes as the ordinary discrete logarithm problem in the Tseng-Jan CKDS-1.

The remainder of our paper is organized as follows. In Section 2, we shall
briefly review the Tseng-Jan CKDS-1. In Section 3, we shall propose our
CKDS with user anonymity. In Section 4, we shall analyze the security of our
scheme. In Section 5, we shall compare the performance of our scheme with

the Tseng-Jan CKDS-1. Finally, the conclusion will be in Section 6.



2 Review of the Tseng-Jan Conference Key
Distribution System

The scheme includes into three stages: (1) system initiative stage, (2) confer-
ence key distribution stage, and (3) conference key recovery stage.

In the system initiative stage, the system chooses two large primes p and ¢
such that ¢|p—1 and a generator g with order ¢ in GF'(p). Then system assigns
a secret key x; € Z; and the corresponding public key Y; = ¢** mod p and the
identity ID; to each participant U; (i = 1,2,---,m) in the system. The set of
all the participants in the system is denoted as A = {Uy,Us, -+, Uy}. Then,
the system delivers the secret key x; to U; € A over a secret channel.

In the conference key distribution stage, U., a chairperson, performs the
following steps for distributing a conference key C'K to the participants in B

(Let B ={Uy,U,,---,U,,n < m} denotes the set of attending members).

Step 1. Compute the common session key k. = Y;"* mod p shared with each Us;.

Step 2. Compute the hash value h; = H(ky || ID. || ID; || T) || m, where
H(-) is a secure one-way hash function with fixed-length output, T is a

timestamp, and || denotes the concatenation.

Step 3. Randomly choose a conference key CK € Z; and construct the n-th
degree of the polynomial F(z) = [T (z — h;)) + CK = 2™ + ¢, 12" ' +

-+ +c1x + g mod q.

Step 4. Compute the check value for CK on timestamp T as V = H(CK ||
1D, || T).

Step 5. Broadcast the message M = {ID., V. T,¢p_1,¢p_9,"*,Co}-

In the conference key recovery stage, each U; € B, according to the message
M ={ID.,V,T, ¢, 1,¢n_2,-,co} broadcasted by U,, performs the following

steps for recovering the conference key C'K shared by the participants in B.



Step 1. Check the validity of the timestamp 7'. If it is invalid, stop the conference

key recovery stage.
Step 2. Compute the common session key £;. = Y* mod p shared with U..

Step 3. Compute h; = H(k;. || ID. || ID; || T) || m and recover CK as F(h;) =

(h)™ + cp_1(h))" ' + -+ ¢1(h;) + co = CK mod q.
Step 4. Check the validity of CK by verifying H(CK || ID. || T) =V.

From the above descriptions, it can be seen that only U; € B can recover
the valid conference key C K from the polynomial by using his/her common

session key k;. shared with U..

3 The Proposed Scheme

Our CKDS with user anonymity is also composed of three stages, and the
notations {A, B,U;, ID;,CK,H(-),T, ||} are the same as those in the Tseng-
Jan scheme. During the system initiative stage, the system publicly chooses
an elliptic curve F over a finite field GF(q) and a base point G with order p
[9]. Then the system assigns a secret key x; € [1,p — 1] and the corresponding
public key @; = x;G to each participant U; € A. Then, the system delivers
the secret key z; to U; € A over a secret channel.

In the conference key distribution stage, U, performs the following steps

for distributing the conference key C'K shared by the participants in B.
Step 1. Compute the common session key k. = z.Q); shared with each U;.

Step 2. Compute the hash value h; = H(k.; || ID. || ID; || T') || m.

Step 3. Randomly choose a line L(z) = c¢;x + CK mod p and compute y; =
L(h;) mod p.

Step 4. Compute the check value for CK on timestamp T as V = H(CK ||

1D, || 7).



Step 5. Broadcast the message M = {ID., VT, c1,y1,Y2," ", Yn}-

In the conference key recovery stage, each U; € B, according to the message
M ={ID.V,T,c1,y1,Y2,- -, Yn} broadcasted by U., performs the following

steps for recovering the conference key C'K shared by the participants in B.

Step 1. Check the validity of the timestamp 7T'. If it is invalid, stop the conference

key recovery stage.
Step 2. Compute the common session key k;. = x;G. shared with U..

Step 3. Compute h; = H(k;. || ID. || ID; || T) || m and use it to reconstruct the

line L(x) to obtain CK.
Step 4. Check the validity of CK by verifying H(CK || ID. || T) = V.

Obviously, we use the elliptic curve discrete logarithm problem to achieve
the same purposes as the ordinary discrete logarithm problem in the Diffie-
Hellman scheme and substitute some simple properties of the line for the in-
terpolating properties of the polynomials. Only U; € B can recover the valid
conference key CK from the line by using his/her common session key k;.

shared with U.,.

4 Security Analysis

The security level of the proposed CKDS with user anonymity is based on the
intractability of the elliptic curve discrete logarithm problem (ECDLP). An
adversary who intends to reveal a secret key x; from its corresponding public
key (); will have to face ECDLP. In the rest of this section, several attacks will

be raised and fought against to demonstrate the security of our scheme.

Attack 1: A non-attending participant U; ¢ B of this conference tries to reveal

the common conference key C'K from the message M = {ID., V, T, ¢, y1,



Yoy =y yn}

Analysis of Attack 1: The non-attending participant Uj ¢ B first computes the
hash value h; = H(k;, || ID, || ID; || T)||m and then tries to reconstruct the
line L(z) with the knowledge of the message M = {ID., V, T, c1,y1,Y2," "+, Yn}-
However, the valid value §; = L(h;) is broadcasted by U, using the attending
participants’ h;s. Hence, any non-attending participant has no ability to obtain

the common conference key C'K. For this reason, it is impossible for any

adversary to reveal the common conference key CK.

Attack 2: An attending participant U; € B of this conference tries to reveal
another common session key k.; and to identify another participant U;, where
1<j<n,j#i

Analysis of Attack 2: The attending participant U; € B can easily reconstruct
the line L(z) and compute h; of another participant. However, the common
session key k.; shared with the chairperson and the identity /D, are protected
by the one-way function H(-). Hence, the common session key k.; cannot be
revealed, and the identities of the participants in the conference are anonymous

to each other.

Attack 3: An adversary tries to replay the intercepted message M = {ID., V,
T, c1, Y1, Y2, - -+, Yn} for impersonating the chairperson U, to hold a conference.
Analysis of Attack 3: The adversary should first set a new acceptable times-
tamp 7', so that the attending participant can verify the validity of T" at Step
1 of the conference key recovery stage. However, he/she cannot forge the valid

h;s without knowing x.. To obtain z. from (). is equivalent to solving ECDLP.

Attack 4: Some participants U; € B try to collaboratively reveal the common

session key k;. of another participant U; € B.



Analysis of Attack 4: As in Analysis of Attack 2, the participants can obtain
h;. However, the common session key k.; shared with the chairperson and the

identity ID; are protected by the one-way hash function.

5 Performance Comparison

In this section, we shall compare the computational complexity of our scheme
with that of the Tseng-Jan scheme. To analyze the computational complexity,
we first define the following notations.

Ty the time for computing the adopted one-way hash function H(-).

Thrrpr: the time for computing modular multiplication.

Trxp: the time for computing modular exponentiation.

Trc_ymur: the time for computing the multiplication of a number and a point
on the elliptic curve.

n: the number of participants in the conference.

Because the time for computing modular addition is much less than Ty, Thrr,
Trxp and Trc_yur, wWe ignore it in the comparison. Furthermore, the authors
of [6, 10, 12] have pointed out that the elliptic curve discrete logarithm prob-
lem with order 160-bit prime offers approximately the same level of security
as the discrete logarithm problem with 1024-bit modulus. Computing the
multiplication of a number and a point on the elliptic curve and a modular
exponentiation require an average of 29 1024-bits and 240 1024-bits modular
multiplications, respectively. Thus, Trc_yor can be expected to be about 8
times faster than Tgxp, i.e., 8 X Tpc_ymur = Texp.

In the conference key distribution stage of our scheme, the chairperson U,
computes the common session key k,; shared with each U; (fori =1,2,---,n).
Step 1 requires n X Tgc_ypr. Then, in Step 2, a timestamp 7T is acquired,

and the hash value h; is computed, which requires n x Ty. Next, U, randomly



chooses the line L(x) and computes y; (for i = 1,2,---,n) in Step 3, which
requires n X Typr. Finally, in Step 4, the check value V' is computed, which
requires Ty. Total computational complexity in this stage is required n x
Tpemvr + (n+1) x Ty +n x Ty

After receiving the message M = {ID.,V, T, c1,y1, Y2, -, yn} broadcasted
by U., each U; enters the conference key recovery stage. He/She verifies T
and computes the common session key k;. shared with U., which requires
Trc_mur (in Steps 1 and 2). Then, in Step 3, each participant computes h; and
reconstructs the line L(z) to obtain CK, which requires Ty + Typr. Finally,
in Step 4, each participant checks the validity of C'K, which requires Ty. The

total computational complexity in this stage is Trc_yor +2 X Ty + Tyur-

Table 1: Computational complexities of the Tseng-Jan scheme and our scheme

‘ H Key distribution stage ‘ Key recovery stage

Tseng—Jan scheme TLXTEXP+(TL+1) XTH TEXP+2XTH—|—(’I’L—]_)
+(n X (n — 1)/2) X TMUL XTMUL

Our scheme n X TEC_MUL + (n — l)X TEC_MUL + 2 X TH + TMUL
Ty +n xTyur

The computational complexity of the Tseng-Jan scheme has been shown in
[11]. According to Table 1, it is obvious that our scheme is more efficient than
the Tseng-Jan scheme. We use the elliptic curve discrete logarithm to replace
the ordinary discrete logarithm problem in the Tseng-Jan scheme. Trc_yor
can be about 8 times faster than Trxp. To construct the n-th degree poly-
nomial F'(x) in the Tseng-Jan scheme requires (n x (n —1)/2) x Tyyr. We
use the line L(x) to replace the n-th degree polynomial F(z) because it only
requires n X Ty to compute y; (for i = 1,2,---,n). On the other hand, to
recover the common conference key CK from F(z) and L(z), the participant
separately requires (n—1) X Tysyr, and Ty, in the Tseng-Jan scheme and our

scheme. The computational complexity of recovering the conference key C'K



from F'(x) in the Tseng-Jan scheme increases as the number of the participants
in the conference increases, but it is only T,z in our scheme.

On the other hand, the chairperson broadcasts n + 3 (i.e. M = {ID,,
V, T, ch1, Cpay -+ co})and n+4 (ie. M ={ID.,V,T, c1,91,Y2, ", Yn})
messages, respectively. The number of messages broadcasted in our scheme is

only larger than that in the Tseng-Jan scheme by 1.

6 Conclusion

In this paper, we have employed the elliptic curve discrete logarithm problem
and some simple properties of the line to replace the interpolating properties
of polynomials in the Tseng-Jan CDKS scheme with user anonymity. Our new
scheme is more efficient than the schemes in [11, 13]. Our scheme outperforms
the Tseng-Jan CDKS with user anonymity and is secure against impersonation

and conspiracy attack.
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