An Improvement of Novel Cryptographic Key Assignment Scheme for Dynamic Access Control in a Hierarchy

Min-Shiang Hwang

Department of Information Management
ChaoYang University of Technology
Wufeng, Taichung County 413, Taiwan, R.O.C.
Email: mshwang@mail.cyut.edu.tw
http://www.cyut.edu.tw/~mshwang/

October 31, 2012

*This research was partially supported by the National Science Council, Taiwan, R.O.C., under contract no.: NSC88-2213-E-324-002.
An Improvement of Novel Cryptographic Key Assignment Scheme for Dynamic Access Control in a Hierarchy

Abstract

This letter presents a cryptographic key assignment scheme for dynamic access control in a hierarchy. A scheme for extending a previous cryptographic key assignment scheme to reduce the computation required for key generation and derivation algorithms is also proposed.

Key words: cryptography, access control, user hierarchy,

1 Introduction

Recently, Shen, Chen, and Lai proposed a novel cryptographic key assignment scheme for dynamic access control in a hierarchy [?]. Their scheme was based on both Rabin’s public key system [?] and the Chinese remainder theorem [?]. The scheme which they proposed was much simpler to implement than other cryptographic key assignment scheme for access control in a hierarchy.

Shen, Chen, and Lai stated that their scheme reduced both the computation time for key assignment and the storage size for public parameters. They also stated that with their scheme existing keys do not need to be altered while updating. In this letter, we propose a scheme which extends Shen, Chen, and Lai’s scheme so that both the computation time for key assignment and the storage size for public parameters are reduced. Our revised scheme also does not need to alter the existing keys while updating.
2 Overview of the Shen-Chen-Lai Scheme

For access control in a hierarchy, the users and their own information items are divided into a number of disjointed sets of security classes, SC_1, SC_2, \cdots, SC_n. Let \leq be a binary partially ordered relation on the set $SC = \{SC_1, SC_2, \cdots, SC_n\}$. $SC_j \leq SC_i$ means that the users in SC_j have a security clearance lower than or equal to those in SC_i. In other words, users in SC_i can derive the secret keys in SC_j and access information held by users in SC_j, but the users in SC_j cannot access the information held by the users in SC_i.

There are two algorithms in the Shen-Chen-Lai Scheme for access control in a hierarchy: the key generation algorithm and the key derivation algorithm. The key generation algorithm is based on the Chinese remainder theorem; and the key derivation algorithm is based on Rabin’s public key system.

The key generation algorithm is completed by central authority (CA), whose main role is to generate public and secret information to each security class. After the key generation algorithm, CA assigns five parameters to each security class SC_i, denoted as H_i, b_i, n_i, C_i, ID_i. Here, H_i is secret information owned by the SC_i. $H_i = \sum(r_j||r'_j)X_j \mod N$, where $i \neq j$ and $SC_j \leq SC_i$. The other parameters (b_i, n_i, C_i, ID_i) are public information. The parameters are defined as follows:

- r_i, r'_i, b_i are random integers for security class SC_i.
- p_i, q_i, m_i are secret parameters for SC_i. Here, $p_i = r_i \times 2^{b_i} + 1$, $q_i = r'_i \times 2^{b_i} - 1$, and $m_i = p_i \times q_i$.
- $n_i, i = 1, \cdots n$, are random pairwise coprime integers.
- $K_i, i = 1, \cdots n$, are random integers as secret key of SC_i.
- ID_i is a specific identity code of SC_i.
\[M_i, i = 1, \cdots , n \text{, are concatenate the } K_i \text{ with its identity code } ID_i \text{ and let } 1 \leq M_i \leq m_i. \]

\[C_i \text{ is a ciphertext which enciphers a plaintext } (M_i) \text{ in the encryption procedure of Rabin’s scheme. In other words, } C_i = M_i(M_i + b_i) \mod m_i. \]

\[N = \prod_{i=1}^{n} n_i. \]

\[X_j = y_i \left(N/n_i \right), \text{ where } y_i \text{ satisfies } y_i(N/n_i) \mod n_i = 1. \]

From the key derivation algorithm of Shen, Chen, and Lai’s scheme, any successor \(SC_j \)’s secret key \(K_j \) be derived from \(SC_i \) with the decryption procedure from Rabin’s scheme. If \(SC_j \leq SC_i \) and \(SC_i \) wants to derive the secret key of \(SC_j \), \(SC_i \) can use the secret information \((H_i) \) owned by himself. \(SC_i \) obtains \((r_j||r_j') \) by computing \(H_i \mod n_j \). Then \(M_j \) is obtained by computing \((-b_j/2)((-b_j/2)^2+C_j)^{1/2} \mod p_j, \) \((-b_j/2)((-b_j/2)^2+C_j)^{1/2} \mod q_j \), where \(p_j \) and \(q_j \) is equal to \(r_j2^{b_j}+1 \) and \(r'_j2^{b_j}−1 \), respectively. Since \(K_j = M_j-ID_j \), \(SC_i \) thus obtains the secret key \(K_j \).

In the previous work [?], the authors used Rabin’s scheme to hide the secret key \(K_j \). In the next section, we improve Shen, Chen, and Lai’s scheme to reduce the computation time for key assignment and storage space for public parameters. The security and the ability of dynamic access control in this new scheme is the same as that of the Shen-Chen-Lai scheme.

3 The Improved Scheme

Shen, Chen, and Lai used Rabin’s scheme to hide the secret key \(K_i \). Since the main function of Rabin’s scheme in Shen-Chen-Lai’s scheme is only to camouflage the secret information, we can instead use the execute-or operation to perform the same function.
To reduce the computation time and storage space, we propose an extended scheme which is a modification of Shen, Chen, and Lai’s scheme. Here, we let K_i denote a secret key of SC_i. The improved scheme is stated as follows.

1. Randomly select $n_i, i = 1, \cdots, n$, and compute $N = \prod_{i=1}^{n} n_i$. This step is same as steps 1, 2, and 3 of Shen-Chen-Lai’s scheme.

2. Randomly select a positive integer r_i for security class SC_i.

3. Randomly select an integer as secret key (K_i) of SC_i.

4. Compute $w_i = r_i \oplus K_i$.

5. Choose y_i such that $y_i(N/n_i) \mod n_i = 1$ for all $i = 1, \cdots, n$.

6. Take any security class SC_i from the hierarchy by bottom-up traversal.

7. If SC_i is a set of leaf security classes, $H_i = 0$.

8. If SC_i is not a set of leaf security classes, compute $H_i = \sum (H_j + r_j y_j (N/n_j) \mod N)$ for all SC_j which are the immediate successors of SC_i.

After the above steps, each security class $(SC_i, i = 1, \cdots, n)$ has three parameters: (H_i, w_i, n_i). H_i is a secret parameter, and w_i and n_i are public parameters.

By using SC_i successors’ public parameters, SC_i can derive any successor SC_j’s secret key K_j as follows.

$$r_j = H_i \mod n_j. \quad (1)$$

By one execute-or operation, SC_i obtains the secret key K_j as follows.

$$K_j = r_j \oplus w_j. \quad (2)$$

We compare the computations in the key assignment algorithm of our scheme with that of Shen-Chen-Lai’s scheme. Our scheme requires only one
additional execute-or operation above the Shen-Chen-Lai scheme. However, our scheme need not to compute \(p_i, q_i, m_i, \) and \(C_i \) as in the Shen-Chen-Lai’s scheme, as stated in Section 2 above. The computational time in key assignment algorithm of this new extended scheme is thus found to be less than that of the Shen-Chen-Lai scheme.

Next, we compare the computations in the key derivation algorithm of our scheme with those in the Shen-Chen-Lai scheme. Our scheme only requires a single computation of Equation (1) and a single computation of Equation (2). However, Shen-Chen-Lai’s scheme requires a single computation of Equation (1) and four computations each of \(p_i, q_i, M_j, \) and \(K_j \), as stated in Section 2. Thus the computational time in key derivation algorithm of this new revised scheme is found to be less than that of the Shen-Chen-Lai scheme.

The storage space of our scheme is only required for three parameters: \((H_i, w_i, n_i)\). However, Shen-Chen-Lai’s scheme requires storage for five parameters: \((H_i, b_i, n_i, C_i, ID_i)\). Obviously, the storage space required by our scheme is less than that of the Shen-Chen-Lai scheme.

In terms of security analyses, the secret key of \(SC_i \) in our scheme is derived by using \(H_i \) and by decomposing execute-or operation \((K_i = r_i \oplus w_i)\). Since \(H_i \) and \(r_i \) are secret information and an illegal user only has the public information \(w_i \) and \(n_i \), he cannot derive the secret key and \(H_i \). In addition, two or more security classes \(SC_j, SC_j \not\supseteq SC_i \) cannot collaborate to derive \(SC_i \)'s secret key.

Our scheme also can function dynamically, which is similar to the Shen-Chen-Lai scheme. The revised scheme not only retains all the advantages of Shen, Chen, and Lai’s original proposal, but also reduces the computation time for key assignment and key derivation, and downsizes the storage space for public parameters.
4 Conclusions

It is shown here that Shen, Chen, and Lai’s scheme required a large computation time to generate and derive keys. A revised scheme which is a slight modification of the Shen-Chen-Lai scheme is proposed. This scheme also can function dynamically in the same manner as that the Shen-Chen-Lai scheme.

Acknowledgements

The author wish to thank many anonymous referees for their suggestions to improve this paper. Part of this research was supported by the National Science Council, Taiwan, R.O.C., under contract no. NSC88-2213-E-324-002.